Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope

Valeria Levi, Qiao Qiao Ruan, Matthew Plutz, Andrew S. Belmont, Enrico Gratton

Research output: Contribution to journalArticlepeer-review


Increasing evidence points to a dynamical compartmentalization of the cell nucleus, yet the mechanisms by which interphase chromatin moves and is positioned within nuclei remain unclear. Here, we study the dynamics of chromatin in vivo applying a novel particle-tracking method in a two-photon microscope that provides ∼10-fold higher spatial and temporal resolutions than previous measurements. We followed the motion of a chromatin sequence containing a lac-operator repeat in cells stably expressing lac repressor fused with enhanced green fluorescent protein, observing long periods of apparent constrained diffusion interrupted by relatively abrupt jumps of ∼150 nm lasting 0.3-2 s. During these jumps, the particle moved an average of four times faster than in the periods between jumps and in paths more rectilinear than predicted for random diffusion motion. Additionally, the jumps were sensitive to the temperature and absent after ATP depletion. These experimental results point to an energy-dependent mechanism driving fast motion of chromatin in interphase cells.

Original languageEnglish (US)
Pages (from-to)4275-4285
Number of pages11
JournalBiophysical journal
Issue number6
StatePublished - Dec 2005

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope'. Together they form a unique fingerprint.

Cite this