Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis

Berkley J. Walker, Darren T. Drewry, Rebecca A. Slattery, Andy VanLoocke, Young B. Cho, Donald R. Ort

Research output: Contribution to journalArticle

Abstract

The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light.

Original languageEnglish (US)
Pages (from-to)1215-1232
Number of pages18
JournalPlant physiology
Volume176
Issue number2
DOIs
StatePublished - Feb 2018

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science

Fingerprint Dive into the research topics of 'Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis'. Together they form a unique fingerprint.

  • Cite this

    Walker, B. J., Drewry, D. T., Slattery, R. A., VanLoocke, A., Cho, Y. B., & Ort, D. R. (2018). Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant physiology, 176(2), 1215-1232. https://doi.org/10.1104/pp.17.01401