TY - JOUR
T1 - Chiral superconductivity in heavy-fermion metal UTe2
AU - Jiao, Lin
AU - Howard, Sean
AU - Ran, Sheng
AU - Wang, Zhenyu
AU - Rodriguez, Jorge Olivares
AU - Sigrist, Manfred
AU - Wang, Ziqiang
AU - Butch, Nicholas P.
AU - Madhavan, Vidya
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/3/26
Y1 - 2020/3/26
N2 - Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction1. An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes2,3. However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity4. Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin5. We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.
AB - Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction1. An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes2,3. However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity4. Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin5. We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.
UR - http://www.scopus.com/inward/record.url?scp=85082321196&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082321196&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2122-2
DO - 10.1038/s41586-020-2122-2
M3 - Article
C2 - 32214254
AN - SCOPUS:85082321196
SN - 0028-0836
VL - 579
SP - 523
EP - 527
JO - Nature
JF - Nature
IS - 7800
ER -