TY - JOUR
T1 - Chern characters for supersymmetric field theories
AU - Berwick-Evans, Daniel
N1 - Publisher Copyright:
© 2023 MSP (Mathematical Sciences Publishers).
PY - 2023
Y1 - 2023
N2 - We construct a map from dj1–dimensional Euclidean field theories to complexified K–theory when d = 1 and complex-analytic elliptic cohomology when d = 2. This provides further evidence for the Stolz–Teichner program, while also identifying candidate geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parametrized generalization of Fei Han’s realization of the Chern character in K–theory as dimensional reduction for 1|1–dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of 2|1–dimensional tori and the derived geometry of complex-analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of N = (0,1) supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
AB - We construct a map from dj1–dimensional Euclidean field theories to complexified K–theory when d = 1 and complex-analytic elliptic cohomology when d = 2. This provides further evidence for the Stolz–Teichner program, while also identifying candidate geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parametrized generalization of Fei Han’s realization of the Chern character in K–theory as dimensional reduction for 1|1–dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of 2|1–dimensional tori and the derived geometry of complex-analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of N = (0,1) supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
KW - elliptic cohomology
KW - partition function
KW - supersymmetric field theories
KW - topological modular forms
UR - http://www.scopus.com/inward/record.url?scp=85179985967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179985967&partnerID=8YFLogxK
U2 - 10.2140/gt.2023.27.1947
DO - 10.2140/gt.2023.27.1947
M3 - Article
AN - SCOPUS:85179985967
SN - 1465-3060
VL - 27
SP - 1947
EP - 1986
JO - Geometry and Topology
JF - Geometry and Topology
IS - 5
ER -