TY - JOUR
T1 - Characterizing RNA Modifications in Single Neurons using Mass Spectrometry
AU - Clark, Kevin D.
AU - Rubakhin, Stanislav S.
AU - Sweedler, Jonathan V.
N1 - This work was funded by the National Institute on Drug Abuse under Award no. P30DA018310 and the National Human Genome Research Institute under Award no. RM1HG010023. K.D.C. acknowledges support from a Beckman Institute Postdoctoral Fellowship. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
PY - 2022/4
Y1 - 2022/4
N2 - Post-transcriptional modifications (PTMs) of RNA represent an understudied mechanism involved in the regulation of translation in the central nervous system (CNS). Recent evidence has linked specific neuronal RNA modifications to learning and memory paradigms. Unfortunately, conventional methods for the detection of these epitranscriptomic features are only capable of characterizing highly abundant RNA modifications in bulk tissues, precluding the assessment of unique PTM profiles that may exist for individual neurons within the activated behavioral circuits. In this protocol, an approach is described—single-neuron RNA modification analysis by mass spectrometry (SNRMA-MS)—to simultaneously detect and quantify numerous modified ribonucleosides in single neurons. The approach is validated using individual neurons of the marine mollusk, Aplysia californica, beginning with surgical isolation and enzymatic treatment of major CNS ganglia to expose neuron cell bodies, followed by manual single-neuron isolation using sharp needles and a micropipette. Next, mechanical and thermal treatment of the sample in a small volume of buffer is done to liberate RNA from an individual cell for subsequent RNA digestion. Modified nucleosides are then identified and quantified using an optimized liquid chromatography-mass spectrometry method. SNRMA-MS is employed to establish RNA modification patterns for single, identified neurons from A. californica that have known morphologies and functions. Examples of qualitative and quantitative SNRMA-MS are presented that highlight the heterogeneous distribution of RNA modifications across individual neurons in neuronal networks.
AB - Post-transcriptional modifications (PTMs) of RNA represent an understudied mechanism involved in the regulation of translation in the central nervous system (CNS). Recent evidence has linked specific neuronal RNA modifications to learning and memory paradigms. Unfortunately, conventional methods for the detection of these epitranscriptomic features are only capable of characterizing highly abundant RNA modifications in bulk tissues, precluding the assessment of unique PTM profiles that may exist for individual neurons within the activated behavioral circuits. In this protocol, an approach is described—single-neuron RNA modification analysis by mass spectrometry (SNRMA-MS)—to simultaneously detect and quantify numerous modified ribonucleosides in single neurons. The approach is validated using individual neurons of the marine mollusk, Aplysia californica, beginning with surgical isolation and enzymatic treatment of major CNS ganglia to expose neuron cell bodies, followed by manual single-neuron isolation using sharp needles and a micropipette. Next, mechanical and thermal treatment of the sample in a small volume of buffer is done to liberate RNA from an individual cell for subsequent RNA digestion. Modified nucleosides are then identified and quantified using an optimized liquid chromatography-mass spectrometry method. SNRMA-MS is employed to establish RNA modification patterns for single, identified neurons from A. californica that have known morphologies and functions. Examples of qualitative and quantitative SNRMA-MS are presented that highlight the heterogeneous distribution of RNA modifications across individual neurons in neuronal networks.
UR - http://www.scopus.com/inward/record.url?scp=85129520585&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129520585&partnerID=8YFLogxK
U2 - 10.3791/63940
DO - 10.3791/63940
M3 - Article
C2 - 35532275
AN - SCOPUS:85129520585
SN - 1940-087X
VL - 2022
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 182
M1 - e63940
ER -