Characterizing Human–Automated Vehicle Interactions: An Investigation into Car-Following Behavior

Yanlin Zhang, Alireza Talebpour

Research output: Contribution to journalArticlepeer-review

Abstract

Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indicate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model (IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.

Original languageEnglish (US)
Pages (from-to)812-826
Number of pages15
JournalTransportation Research Record
Volume2678
Issue number5
DOIs
StatePublished - May 2024

Keywords

  • automated/autonomous vehicles
  • operations
  • traffic flow

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Characterizing Human–Automated Vehicle Interactions: An Investigation into Car-Following Behavior'. Together they form a unique fingerprint.

Cite this