Characterizing extreme and oppressive heat waves in illinois

Trent W. Ford, Justin T. Schoof

Research output: Contribution to journalArticlepeer-review

Abstract

Heat waves are characteristic features of summertime climate in the Midwest United States and can have significant agricultural, hydrological, and societal impacts. Historically, heat waves in the Midwest state of Illinois have been either extreme (high temperature and low humidity) or oppressive (high temperature and high humidity) in nature, but our knowledge of the factors determining which heat wave type occurs is limited. We use self-organizing maps to classify synoptic-scale atmospheric circulation patterns associated with oppressive and extreme heat events and analysis of variance to evaluate the atmospheric and land surface features responsible for differences in humidity that characterize the two. We find that the majority of extreme and oppressive heat events are associated with similar synoptic-scale atmospheric conditions. Additionally, both locally evaporated moisture and advected moisture sources were important for determining which of the two heat wave types occurred. Specifically, oppressive heat waves were characterized by abundant antecedent precipitation, surplus soil moisture, and elevated evapotranspiration and related atmospheric humidity. Lower humidity levels during extreme heat wave events were driven by relative reductions in evapotranspiration due to limited soil water content. Overall, our results suggest that the onset of heat waves in Illinois is primarily driven by circulation features in the upper atmosphere; however, the distinction of extreme or oppressive heat wave is due to differences in boundary layer humidity, driven in part by land surface moisture availability for evapotranspiration.

Original languageEnglish (US)
Pages (from-to)682-698
Number of pages17
JournalJournal of Geophysical Research
Volume122
Issue number2
DOIs
StatePublished - 2017
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'Characterizing extreme and oppressive heat waves in illinois'. Together they form a unique fingerprint.

Cite this