Characterizing audio adversarial examples using temporal dependency

Zhuolin Yang, Pin Yu Chen, Bo Li, Dawn Song

Research output: Contribution to conferencePaper

Abstract

Recent studies have highlighted adversarial examples as a ubiquitous threat to different neural network models and many downstream applications. Nonetheless, as unique data properties have inspired distinct and powerful learning principles, this paper aims to explore their potentials towards mitigating adversarial inputs. In particular, our results reveal the importance of using the temporal dependency in audio data to gain discriminate power against adversarial examples. Tested on the automatic speech recognition (ASR) tasks and three recent audio adversarial attacks, we find that (i) input transformation developed from image adversarial defense provides limited robustness improvement and is subtle to advanced attacks; (ii) temporal dependency can be exploited to gain discriminative power against audio adversarial examples and is resistant to adaptive attacks considered in our experiments. Our results not only show promising means of improving the robustness of ASR systems but also offer novel insights in exploiting domain-specific data properties to mitigate negative effects of adversarial examples.

Original languageEnglish (US)
StatePublished - Jan 1 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: May 6 2019May 9 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
CountryUnited States
CityNew Orleans
Period5/6/195/9/19

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint Dive into the research topics of 'Characterizing audio adversarial examples using temporal dependency'. Together they form a unique fingerprint.

  • Cite this

    Yang, Z., Chen, P. Y., Li, B., & Song, D. (2019). Characterizing audio adversarial examples using temporal dependency. Paper presented at 7th International Conference on Learning Representations, ICLR 2019, New Orleans, United States.