Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

Timothy H. Lee, Yilu Lin, Han Wu, Lei Meng, Alan Christopher Hansen, Chia-Fon Lee

Research output: Contribution to journalConference article

Abstract

Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach. This paper reviews the production of ABE and characterization of its spray and combustion processes. The results obtained by our research group during the recent four years will also be presented. The main focus of this paper is to review the efforts made in fundamental spray research under quasi-steady flow field environments provided by a high-pressure, high-temperature constant volume chamber. In-cylinder pressure traces were calculated to derive apparent heat release rates high-speed Mie-scattering images were acquired to characterize liquid spray penetration, and natural flame luminosity was also captured to depict spatial and temporal soot distribution. It is observed that the acetone content has a major influence in the combustion behavior of the ABE mixture. An increased content of acetone will lead to a significantly advanced combustion phasing. Butanol, as another important species in the ABE mixture, is able to compensate the advancing effect caused by acetone and ethanol. More importantly, butanol can increase the overall energy density of the mixture, which makes the property of the mixture closer to that of current transportation fuels. In addition, the underlying challenges faced in this area of research are described.

Original languageEnglish (US)
JournalSAE Technical Papers
Volume2015-April
Issue numberApril
DOIs
StatePublished - Apr 14 2015
EventSAE 2015 World Congress and Exhibition - Detroit, United States
Duration: Apr 21 2015Apr 23 2015

Fingerprint

Butenes
Acetone
Ethanol
Steady flow
Engine cylinders
Soot
Fermentation
Purification
Diesel engines
Costs
Luminance
Flow fields

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Cite this

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber. / Lee, Timothy H.; Lin, Yilu; Wu, Han; Meng, Lei; Hansen, Alan Christopher; Lee, Chia-Fon.

In: SAE Technical Papers, Vol. 2015-April, No. April, 14.04.2015.

Research output: Contribution to journalConference article

@article{63e270db7c3f4701b3249c9581c6e8de,
title = "Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber",
abstract = "Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach. This paper reviews the production of ABE and characterization of its spray and combustion processes. The results obtained by our research group during the recent four years will also be presented. The main focus of this paper is to review the efforts made in fundamental spray research under quasi-steady flow field environments provided by a high-pressure, high-temperature constant volume chamber. In-cylinder pressure traces were calculated to derive apparent heat release rates high-speed Mie-scattering images were acquired to characterize liquid spray penetration, and natural flame luminosity was also captured to depict spatial and temporal soot distribution. It is observed that the acetone content has a major influence in the combustion behavior of the ABE mixture. An increased content of acetone will lead to a significantly advanced combustion phasing. Butanol, as another important species in the ABE mixture, is able to compensate the advancing effect caused by acetone and ethanol. More importantly, butanol can increase the overall energy density of the mixture, which makes the property of the mixture closer to that of current transportation fuels. In addition, the underlying challenges faced in this area of research are described.",
author = "Lee, {Timothy H.} and Yilu Lin and Han Wu and Lei Meng and Hansen, {Alan Christopher} and Chia-Fon Lee",
year = "2015",
month = "4",
day = "14",
doi = "10.4271/2015-01-0919",
language = "English (US)",
volume = "2015-April",
journal = "SAE Technical Papers",
issn = "0148-7191",
publisher = "SAE International",
number = "April",

}

TY - JOUR

T1 - Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

AU - Lee, Timothy H.

AU - Lin, Yilu

AU - Wu, Han

AU - Meng, Lei

AU - Hansen, Alan Christopher

AU - Lee, Chia-Fon

PY - 2015/4/14

Y1 - 2015/4/14

N2 - Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach. This paper reviews the production of ABE and characterization of its spray and combustion processes. The results obtained by our research group during the recent four years will also be presented. The main focus of this paper is to review the efforts made in fundamental spray research under quasi-steady flow field environments provided by a high-pressure, high-temperature constant volume chamber. In-cylinder pressure traces were calculated to derive apparent heat release rates high-speed Mie-scattering images were acquired to characterize liquid spray penetration, and natural flame luminosity was also captured to depict spatial and temporal soot distribution. It is observed that the acetone content has a major influence in the combustion behavior of the ABE mixture. An increased content of acetone will lead to a significantly advanced combustion phasing. Butanol, as another important species in the ABE mixture, is able to compensate the advancing effect caused by acetone and ethanol. More importantly, butanol can increase the overall energy density of the mixture, which makes the property of the mixture closer to that of current transportation fuels. In addition, the underlying challenges faced in this area of research are described.

AB - Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach. This paper reviews the production of ABE and characterization of its spray and combustion processes. The results obtained by our research group during the recent four years will also be presented. The main focus of this paper is to review the efforts made in fundamental spray research under quasi-steady flow field environments provided by a high-pressure, high-temperature constant volume chamber. In-cylinder pressure traces were calculated to derive apparent heat release rates high-speed Mie-scattering images were acquired to characterize liquid spray penetration, and natural flame luminosity was also captured to depict spatial and temporal soot distribution. It is observed that the acetone content has a major influence in the combustion behavior of the ABE mixture. An increased content of acetone will lead to a significantly advanced combustion phasing. Butanol, as another important species in the ABE mixture, is able to compensate the advancing effect caused by acetone and ethanol. More importantly, butanol can increase the overall energy density of the mixture, which makes the property of the mixture closer to that of current transportation fuels. In addition, the underlying challenges faced in this area of research are described.

UR - http://www.scopus.com/inward/record.url?scp=84938405525&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938405525&partnerID=8YFLogxK

U2 - 10.4271/2015-01-0919

DO - 10.4271/2015-01-0919

M3 - Conference article

AN - SCOPUS:84938405525

VL - 2015-April

JO - SAE Technical Papers

JF - SAE Technical Papers

SN - 0148-7191

IS - April

ER -