TY - JOUR
T1 - Characterization of Aplysia enticin and temptin, two novel water-borne protein pheromones that act in concert with attractin to stimulate mate attraction
AU - Cummins, Scott F.
AU - Nichols, Amy E.
AU - Amare, Andinet
AU - Hummon, Amanda B.
AU - Sweedler, Jonathan V.
AU - Nagle, Gregg T.
PY - 2004/6/11
Y1 - 2004/6/11
N2 - Mate attraction in Aplysia involves a long-distance water-borne signal (attractin) that is released during egg laying. Other pheromones are predicted to be released during egg laying that act in concert with albumen gland attractin to stimulate attraction, but their identities are unknown. To identify other candidate water-borne pheromones, we employed differential library screening of an albumen gland cDNA library, Northern blot analysis, purification, characterization, cloning, and expression of albumen gland proteins, matrix-assisted laser desorption ionization mass spectrometry, pheromone secretion assays, behavioral bioassays, immunolocalization studies, and comparative genomics. Four genes, Alb-23, Alb-24, Alb-69, and Alb-172, were highly expressed in Aplysia californica albumen glands and encoded novel proteins. The products of the Alb-24 ("enticin") and Alb-172 ("temptin") precursors were soluble and highly abundant in albumen gland extracts, whereas Alb-23 and Alb-69 were membrane-associated proteins. A comparative analysis showed that the predicted Aplysia brasiliana enticin and temptin proteins were 90 and 91% identical, respectively, to their A. californica homologs. T-maze attraction bioassay studies have previously demonstrated that egg cordons alone are attractive to Aplysia but that attractin alone is not. In the present study, however, the combination of attractin, enticin, and temptin was found to be significantly attractive to potential mates and doubled the number of animals attracted to this stimulus compared with control animals. The combined data strongly suggest that enticin and temptin are novel candidate water-borne protein pheromones that act in concert with attractin to attract Aplysia to form and maintain egg-laying and mating aggregations.
AB - Mate attraction in Aplysia involves a long-distance water-borne signal (attractin) that is released during egg laying. Other pheromones are predicted to be released during egg laying that act in concert with albumen gland attractin to stimulate attraction, but their identities are unknown. To identify other candidate water-borne pheromones, we employed differential library screening of an albumen gland cDNA library, Northern blot analysis, purification, characterization, cloning, and expression of albumen gland proteins, matrix-assisted laser desorption ionization mass spectrometry, pheromone secretion assays, behavioral bioassays, immunolocalization studies, and comparative genomics. Four genes, Alb-23, Alb-24, Alb-69, and Alb-172, were highly expressed in Aplysia californica albumen glands and encoded novel proteins. The products of the Alb-24 ("enticin") and Alb-172 ("temptin") precursors were soluble and highly abundant in albumen gland extracts, whereas Alb-23 and Alb-69 were membrane-associated proteins. A comparative analysis showed that the predicted Aplysia brasiliana enticin and temptin proteins were 90 and 91% identical, respectively, to their A. californica homologs. T-maze attraction bioassay studies have previously demonstrated that egg cordons alone are attractive to Aplysia but that attractin alone is not. In the present study, however, the combination of attractin, enticin, and temptin was found to be significantly attractive to potential mates and doubled the number of animals attracted to this stimulus compared with control animals. The combined data strongly suggest that enticin and temptin are novel candidate water-borne protein pheromones that act in concert with attractin to attract Aplysia to form and maintain egg-laying and mating aggregations.
UR - http://www.scopus.com/inward/record.url?scp=2942558421&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2942558421&partnerID=8YFLogxK
U2 - 10.1074/jbc.M313585200
DO - 10.1074/jbc.M313585200
M3 - Article
C2 - 15054104
AN - SCOPUS:2942558421
SN - 0021-9258
VL - 279
SP - 25614
EP - 25622
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 24
ER -