Characterization and performance of the second-year SPT-3G focal plane

D. Dutcher, P. A.R. Ade, Z. Ahmed, A. J. Anderson, J. S. Avva, R. Basu Thakur, A. N. Bender, B. A. Benson, J. E. Carlstrom, F. W. Carter, T. W. Cecil, C. L. Chang, J. F. Cliche, A. Cukierman, T. De Haan, J. Ding, M. A. Dobbs, W. Everett, A. Foster, J. GallicchioA. Gilbert, J. C. Groh, A. H. Harke-Hosemann, S. T. Guns, N. W. Halverson, N. L. Harrington, J. W. Henning, W. L. Holzapfel, N. Huang, K. D. Irwin, O. B. Jeong, M. Jonas, T. S. Khaire, A. M. Kofman, M. Korman, D. L. Kubik, S. Kuhlmann, C. L. Kuo, A. E. Lowitz, A. T. Lee, S. S. Meyer, D. Michalik, J. Montgomery, A. Nadolski, T. Natoli, H. Nguyen, G. I. Noble, V. Novosad, S. Padin, Z. Pan, J. Pearson, C. M. Posada, W. Quan, A. Rahlin, J. E. Ruhl, J. T. Sayre, E. Shirokoff, G. Smecher, J. A. Sobrin, A. A. Stark, K. T. Story, A. Suzuki, K. L. Thompson, C. Tucker, K. Vanderlinde, J. D. Vieira, G. Wang, N. Whitehorn, V. Yefremenko, K. W. Yoon, M. R. Young

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal plane has increased by an order of magnitude from previous instruments to ∼16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
EditorsJonas Zmuidzinas, Jian-Rong Gao
PublisherSPIE
ISBN (Print)9781510619692
DOIs
StatePublished - 2018
Externally publishedYes
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018 - Austin, United States
Duration: Jun 12 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10708
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018
Country/TerritoryUnited States
CityAustin
Period6/12/186/15/18

Keywords

  • CMB
  • Cosmology
  • SPT
  • TES
  • detectors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Characterization and performance of the second-year SPT-3G focal plane'. Together they form a unique fingerprint.

Cite this