Characterization and formation of the pristine rhizoliths around Artemisia roots in dune soils of Tengeri Desert, NW China

Qingfeng Sun, Kazem Zamanian, Arnaud Huguet, Keyu Fa, Hong Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Rhizoliths are the products of mineralization, petrification, or fossilization around and/or within plant roots. Among them, carbonate rhizoliths are the most common. Pristine carbonate rhizoliths with co-existing plant root relicts in the Tengeri Desert, NW China were studied, with a combination of intensive field observations and laboratory methods such as microscopy, scanning electronic microscopy, energy dispersive X-ray spectra, radiocarbon dating, and isotope mass spectrometer. The field observations revealed that the pristine rhizoliths are only present at the sites where Artemisia sphaerocephala Krasch are growing i.e. in swales among sand dunes. Soil moisture of the swales is the main controlling factor of rhizoliths formation. It is in turn affected by the soil physical properties, landscape position, and climate variability, consistent with the locations of sampled rhizoliths in the swales where Artemisia plants are mostly distributed. The 14C AMS dating indicated that the rhizoliths are much older (4000–5000 years) than their co-existing modern plant root relicts in agreement with field observations. Morphological, mineralogical and isotopic analyses revealed that carbon sources used for the rhizoliths formation were partially derived from decomposing plant roots but with significant contribution from dissolution of lithogenic carbonates. The calcium sources were suggested to be the in situ weathering of minerals (mostly lithogenic carbonates) and the pressure-dissolution of carbonates. Enough CO2 from the root decomposition have triggered carbonate accumulation around the root to form rhizoliths. Other minor chemical components of the root are S, N, P, which produce acidic water with the negative ions of SO4 2−, NO3 , PO4 3-, have also favored acidic soil environment and enhanced carbonate dissolution and mineral weathering. Redox environment around Artemisia roots were also observed to be a key factor for the pristine rhizolith formation. The pristine rhizoliths were preferentially formed in semi-closed redox condition with water nearly always available at intermediate depths. In addition, they were formed through carbonate epidiagenesis in shallow soils of the desert. Altogether, our results showed that the formation of the pristine rhizoliths was affected by the combination of several environmental factors. This led us to propose a conceptual model of rhizolith formation in desert soils.

Original languageEnglish (US)
Article number104633
JournalCatena
Volume193
DOIs
StatePublished - Oct 2020

Keywords

  • Artemisia roots
  • Carbonatization
  • Dune soil
  • Pristine rhizoliths
  • Redox condition
  • Soil moisture

ASJC Scopus subject areas

  • Earth-Surface Processes

Fingerprint Dive into the research topics of 'Characterization and formation of the pristine rhizoliths around Artemisia roots in dune soils of Tengeri Desert, NW China'. Together they form a unique fingerprint.

Cite this