TY - JOUR
T1 - Chaotic complex dynamics and Newton's method
AU - Benzinger, Harold E.
AU - Burns, Scott A.
AU - Palmore, Julian I.
PY - 1987/1/19
Y1 - 1987/1/19
N2 - We consider one-parameter families of Julia sets arising from Newton's method in the complex domain. We show the existence of bifurcation points where zeros coalesce or change from attractors to repellors, and points where chaotic behavior occurs.
AB - We consider one-parameter families of Julia sets arising from Newton's method in the complex domain. We show the existence of bifurcation points where zeros coalesce or change from attractors to repellors, and points where chaotic behavior occurs.
UR - http://www.scopus.com/inward/record.url?scp=45949124426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45949124426&partnerID=8YFLogxK
U2 - 10.1016/0375-9601(87)90412-9
DO - 10.1016/0375-9601(87)90412-9
M3 - Article
AN - SCOPUS:45949124426
SN - 0375-9601
VL - 119
SP - 441
EP - 446
JO - Physics Letters, Section A: General, Atomic and Solid State Physics
JF - Physics Letters, Section A: General, Atomic and Solid State Physics
IS - 9
ER -