Certifying geometric robustness of neural networks

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin Vechev

Research output: Contribution to journalConference articlepeer-review

Abstract

The use of neural networks in safety-critical computer vision systems calls for their robustness certification against natural geometric transformations (e.g., rotation, scaling). However, current certification methods target mostly norm-based pixel perturbations and cannot certify robustness against geometric transformations. In this work, we propose a new method to compute sound and asymptotically optimal linear relaxations for any composition of transformations. Our method is based on a novel combination of sampling and optimization. We implemented the method in a system called DEEPG and demonstrated that it certifies significantly more complex geometric transformations than existing methods on both defended and undefended networks while scaling to large architectures.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Certifying geometric robustness of neural networks'. Together they form a unique fingerprint.

Cite this