Cell spreading controls balance of prestress by microtubules and extracellular matrix.

Shaohua Hu, Jianxin Chen, Ning Wang

Research output: Contribution to journalArticlepeer-review

Abstract

The controversy surrounds the cellular tensegrity model. Some suggest that microtubules (MTs) must bear a significant portion of cell contractile stress (prestress) if tensegrity is a useful model. Previously we have shown that for highly spread airway smooth muscle cells (areas>2500 microm2) MTs balance a significant but small potion (average 14%) of the prestress. To further explore if controlling the degree of cell spreading could modulate the portion of the prestress balanced by MTs, we utilized a recent method by which tractions are quantified in cells that are constrained within micropatterned adhesive islands of defined sizes on the surface of flexible polyacrylamide gels containing fluorescent microbeads. The prediction is that if MTs balance a portion of the contractile stress, then, upon their disruption, the portion of the stress balanced by MTs would shift to the substrate, causing an increase in traction and strain energy. We first activated the cells maximally with histamine and then disrupted the MTs with colchicine. Histamine resulted in an increase in intracellular calcium whereas ensuing colchicine addition in the presence of histamine did not change intracellular calcium concentration, suggesting there was no additional net increase in contractile stress inside the cell. We found that following disruption of MTs the increase in traction and strain energy varied with the degree of cell spreading: as the cell projected areas increased from 500 micrometer 2 to about 1800 micrometer 2, the percent increase in tractions decreased from 80% to about a few percent and the percent increase in strain energy decreased from 200% to almost zero percent, indicating the portion of the prestress balanced by MTs decreased as the cells increased spreading. These findings demonstrate that complementary role of the extracellular matrix and the MTs in balancing the prestress is controlled by the degree of cell spreading.

Original languageEnglish (US)
Pages (from-to)2177-2182
Number of pages6
JournalFrontiers in bioscience : a journal and virtual library
Volume9
DOIs
StatePublished - Sep 1 2004
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Cell spreading controls balance of prestress by microtubules and extracellular matrix.'. Together they form a unique fingerprint.

Cite this