CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning with Demonstrations

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Although reinforcement learning has found widespread use in dense reward settings, training autonomous agents with sparse rewards remains challenging. To address this difficulty, prior work has shown promising results when using not only task-specific demonstrations but also task-agnostic albeit somewhat related demonstrations. In most cases, the available demonstrations are distilled into an implicit prior, commonly represented via a single deep net. Explicit priors in the form of a database that can be queried have also been shown to lead to encouraging results. To better benefit from available demonstrations, we develop a method to Combine Explicit and Implicit Priors (CEIP). CEIP exploits multiple implicit priors in the form of normalizing flows in parallel to form a single complex prior. Moreover, CEIP uses an effective explicit retrieval and push-forward mechanism to condition the implicit priors. In three challenging environments, we find the proposed CEIP method to improve upon sophisticated state-of-the-art techniques.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning with Demonstrations'. Together they form a unique fingerprint.

Cite this