CatchBackdoor: Backdoor Detection via Critical Trojan Neural Path Fuzzing

Haibo Jin, Ruoxi Chen, Jinyin Chen, Haibin Zheng, Yang Zhang, Haohan Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The success of deep neural networks (DNNs) in real-world applications has benefited from abundant pre-trained models. However, the backdoored pre-trained models can pose a significant trojan threat to the deployment of downstream DNNs. Numerous backdoor detection methods have been proposed but are limited to two aspects: (1) high sensitivity on trigger size, especially on stealthy attacks (i.e., blending attacks and defense adaptive attacks); (2) rely heavily on benign examples for reverse engineering. To address these challenges, we empirically observed that trojaned behaviors triggered by various trojan attacks can be attributed to the trojan path, composed of top-k critical neurons with more significant contributions to model prediction changes. Motivated by it, we propose CatchBackdoor, a detection method against trojan attacks. Based on the close connection between trojaned behaviors and trojan path to trigger errors, CatchBackdoor starts from the benign path and gradually approximates the trojan path through differential fuzzing. We then reverse triggers from the trojan path, to trigger errors caused by diverse trojaned attacks. Extensive experiments on MINST, CIFAR-10, and a-ImageNet datasets and 7 models (LeNet, ResNet, and VGG) demonstrate the superiority of CatchBackdoor over the state-of-the-art methods, in terms of (1) effective - it shows better detection performance, especially on stealthy attacks (∼×2 on average); (2) extensible - it is robust to trigger size and can conduct detection without benign examples.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer
Pages90-106
Number of pages17
ISBN (Print)9783031729690
DOIs
StatePublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: Sep 29 2024Oct 4 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15105 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period9/29/2410/4/24

Keywords

  • Backdoor detection
  • Fuzzing
  • Neural path

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'CatchBackdoor: Backdoor Detection via Critical Trojan Neural Path Fuzzing'. Together they form a unique fingerprint.

Cite this