TY - JOUR
T1 - Catalytic DNA with phosphatase activity
AU - Chandrasekar, Jagadeeswaran
AU - Silverman, Scott K.
PY - 2013/4/2
Y1 - 2013/4/2
N2 - Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase activity). The best deoxyribozyme decreases the half-life for phosphoserine hydrolysis from as high as >10 10 y to <1 h. The phosphatase activity also occurs with nonpeptidic substrates but with reduced efficiency, indicating a preference for phosphopeptides. The newly identified deoxyribozymes can function with multiple turnover using free peptide substrates, have activity in the presence of human cell lysate or BSA, and catalyze dephosphorylation of a larger protein substrate, suggesting broader application of DNA catalysts as artificial phosphatases.
AB - Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase activity). The best deoxyribozyme decreases the half-life for phosphoserine hydrolysis from as high as >10 10 y to <1 h. The phosphatase activity also occurs with nonpeptidic substrates but with reduced efficiency, indicating a preference for phosphopeptides. The newly identified deoxyribozymes can function with multiple turnover using free peptide substrates, have activity in the presence of human cell lysate or BSA, and catalyze dephosphorylation of a larger protein substrate, suggesting broader application of DNA catalysts as artificial phosphatases.
UR - http://www.scopus.com/inward/record.url?scp=84875856674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875856674&partnerID=8YFLogxK
U2 - 10.1073/pnas.1221946110
DO - 10.1073/pnas.1221946110
M3 - Article
C2 - 23509279
AN - SCOPUS:84875856674
VL - 110
SP - 5315
EP - 5320
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 14
ER -