Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects

Research output: Contribution to journalReview articlepeer-review

Abstract

The discovery of naturally occurring catalytic RNA (RNA enzymes, or ribozymes) in the 1980s immediately revised the view of RNA as a passive messenger that solely carries information from DNA to proteins. Because DNA and RNA differ only by the absence or presence of a 2′-hydroxyl group on each ribose ring of the polymer, the question of 'catalytic DNA?' arises. Although no natural DNA catalysts have been reported, since 1994 many artificial DNA enzymes, or 'deoxyribozymes', have been described. Deoxyribozymes offer insight into the mechanisms of natural and artificial ribozymes. DNA enzymes are also used as tools for in vitro and in vivo biochemistry, and they are key components of analytical sensors. This review focuses primarily on catalytic DNA for synthetic applications. Broadly defined, deoxyribozymes may have the greatest potential for catalyzing reactions in which the high selectivities of 'enzymes' are advantageous relative to traditional small-molecule catalysts. Although the scope of DNA-catalyzed synthesis is currently limited in most cases to oligonucleotide substrates, recent efforts have began to expand this frontier in promising new directions.

Original languageEnglish (US)
Pages (from-to)3467-3485
Number of pages19
JournalChemical Communications
Issue number30
DOIs
StatePublished - 2008

ASJC Scopus subject areas

  • Catalysis
  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • General Chemistry
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects'. Together they form a unique fingerprint.

Cite this