Abstract
Excessive phosphorus (P) in marine and freshwater systems has been identified as a primary perpetrator for the harmful and nuisance algal blooms. In this study, a novel designer biochar was produced from sawdust biomass treated with lime sludge prior to pyrolysis. The adsorption of dissolved P on the designer biochar was comprehensively evaluated under different experimental conditions. It revealed that the removal of dissolved P by the designer biochar was more efficient than unmodified biochar, lime sludge, and their post-combination, suggesting that the pretreatment of biomass with lime sludge for the designer biochar production has a significantly synergic effect on enhancing P removal. Post-adsorption characterization and mathematical modeling analyses indicated that the adsorption of dissolved P on the designer biochar could be controlled by multiple mechanisms including physical and chemical adsorption. The precipitation reaction between P anions and metal ions on the surface of the designer biochar was identified as a predominant mechanism. The X-ray diffraction showed that the precipitation reaction generated a series of P fertilizer forms depositing onto the designer biochar. In addition, batch adsorption experiments showed that both initial solution pH and coexisting anions had a lesser effect on the P removal by the designer biochar. This study proposed that the designer biochar could be a promising sorbent to remove dissolved P, and the nutrient-captured biochar could be used as a fertilizer to recover nutrients.
Original language | English (US) |
---|---|
Article number | 129717 |
Journal | Chemosphere |
Volume | 274 |
DOIs | |
State | Published - Jul 2021 |
Keywords
- Adsorption
- Capture
- Designer biochar
- Dissolved phosphorous
- Lime sludge
- Recover
ASJC Scopus subject areas
- General Chemistry
- Public Health, Environmental and Occupational Health
- Pollution
- Health, Toxicology and Mutagenesis
- Environmental Engineering
- Environmental Chemistry