Capacity Results for the Noisy Shuffling Channel

Ilan Shomorony, Reinhard Heckel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motivated by DNA-based storage, we study the noisy shuffling channel, which can be seen as the concatenation of a standard noisy channel (such as the BSC) and a shuffling channel, which breaks the data block into small pieces and shuffles them. This channel models a DNA storage system, by capturing two of its key aspects: (1) the data is written onto many short DNA molecules that are stored in an unordered way and (2) the molecules are corrupted by noise at synthesis, sequencing, and during storage. For the BSC-shuffling channel we characterize the capacity exactly (for a large set of parameters), and show that a simple index-based coding scheme is optimal.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages762-766
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
CountryFrance
CityParis
Period7/7/197/12/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Capacity Results for the Noisy Shuffling Channel'. Together they form a unique fingerprint.

Cite this