Capacity and random-coding error exponent for public fingerprinting game

Ying Wang, Pierre Moulin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Capacity and random-coding error exponent formulas are derived for a public fingerprinting (traitor tracing) game. The original media copy is available to the encoder, but not to the decoder. We derive the random-coding error exponent for a stacked binning scheme. The exponent is strictly positive at all rates below capacity. The converse part of the capacity proof is based on the Gel'fand-Pinsker technique.

Original languageEnglish (US)
Title of host publicationProceedings - 2006 IEEE International Symposium on Information Theory, ISIT 2006
Pages1174-1178
Number of pages5
DOIs
StatePublished - Dec 1 2006
Event2006 IEEE International Symposium on Information Theory, ISIT 2006 - Seattle, WA, United States
Duration: Jul 9 2006Jul 14 2006

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8101

Other

Other2006 IEEE International Symposium on Information Theory, ISIT 2006
CountryUnited States
CitySeattle, WA
Period7/9/067/14/06

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Capacity and random-coding error exponent for public fingerprinting game'. Together they form a unique fingerprint.

  • Cite this

    Wang, Y., & Moulin, P. (2006). Capacity and random-coding error exponent for public fingerprinting game. In Proceedings - 2006 IEEE International Symposium on Information Theory, ISIT 2006 (pp. 1174-1178). [4036150] (IEEE International Symposium on Information Theory - Proceedings). https://doi.org/10.1109/ISIT.2006.261990