Candidate massive galaxies at z ∼ 4 in the Dark Energy Survey

Pierandrea Guarnieri, Claudia Maraston, Daniel Thomas, Janine Pforr, Violeta Gonzalez-Perez, James Etherington, Joakim Carlsen, Xan Morice-Atkinson, Christopher J. Conselice, Julia Gschwend, Matias Carrasco Kind, Tim Abbott, Sahar Allam, David Brooks, David Burke, Aurelio Carnero Rosell, Jorge Carretero, Carlos Cunha, Chris D'Andrea, Luiz Da CostaJuan De Vincente, Darren DePoy, H. Thomas Diehl, Peter Doel, Josh Frieman, Juan Garcia-Bellido, Daniel Gruen, Gaston Gutierrez, Dominic Hanley, Devon Hollowood, Klaus Honscheid, David James, Tesla Jeltema, Kyler Kuehn, Marcos Lima, Marcio A.G. Maia, Jennifer Marshall, Paul Martini, Peter Melchior, Felipe Menanteau, Ramon Miquel, Andres PlazasMalagon, Samuel Richardson, Kathy Romer, Eusebio Sanchez, Vic Scarpine, Rafe Schindler, Ignacio Sevilla, Mathew Smith, Marcelle Soares-Santos, Flavia Sobreira, Eric Suchyta, Gregory Tarle, Alistair Walker, William Wester

Research output: Contribution to journalReview articlepeer-review


Using stellar population models, we predicted that the Dark Energy Survey (DES)-due to its special combination of area (5000 deg2) and depth (i = 24.3)-would be in the position to detect massive (1011 M) galaxies at z ∼ 4. We confront those theoretical calculations with the first ∼150 deg2 of DES data reaching nominal depth. From a catalogue containing ∼5 million sources, ∼26 000 were found to have observed-frame g-r versus r-i colours within the locus predicted for z ∼ 4 massive galaxies. We further removed contamination by stars and artefacts, obtaining 606 galaxies lining up by the model selection box. We obtained their photometric redshifts and physical properties by fitting model templates spanning a wide range of star formation histories, reddening and redshift. Key to constrain the models is the addition, to the optical DES bands g, r, i, z, and Y, of near-IR J, H, Ks data from the Vista Hemisphere Survey. We further applied several quality cuts to the fitting results, including goodness of fit and a unimodal redshift probability distribution. We finally select 233 candidates whose photometric redshift probability distribution function peaks around z ∼ 4, have high stellar masses [log (M∗/M) ∼ 11.7 for a Salpeter IMF] and ages around 0.1 Gyr, i.e. formation redshift around 5. These properties match those of the progenitors of the most massive galaxies in the local Universe. This is an ideal sample for spectroscopic followup to select the fraction of galaxies which are truly at high redshift. These initial results and those at the survey completion, which we shall push to higher redshifts, will set unprecedented constraints on galaxy formation, evolution, and the re-ionization epoch.

Original languageEnglish (US)
Pages (from-to)3060-3081
Number of pages22
JournalMonthly Notices of the Royal Astronomical Society
Issue number3
StatePublished - Mar 1 2019


  • Galaxies: evolution
  • Galaxies: high-redshift

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Candidate massive galaxies at z ∼ 4 in the Dark Energy Survey'. Together they form a unique fingerprint.

Cite this