Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats

Diego Hernández-Saavedra, Laura Moody, Xinyu Tang, Zachary J. Goldberg, Alex P. Wang, Hong Chen, Yuan Xiang Pan

Research output: Contribution to journalArticlepeer-review

Abstract

Chronic metabolic diseases are on the rise worldwide and their etiology is multifactorial. Among them, inflammatory components like Tumor Necrosis Factor (TNF), contribute to whole-body metabolic impairment. Caloric Restriction (CR) combats metabolic diseases, but how it reduces inflammation remains understudied. We aimed to evaluate the impact of chronic CR on muscle inflammation, in particular TNF. In our study, 4-week old male Sprague-Dawley rats were fed a high-fat diet (HF, 45% Kcal of fat from lard) ad libitum for 3 months. After estimation of their energy requirement (1 month), they were then divided into three groups: HF ad libitum (OL), weight maintenance with AIN93M (9.5% Kcal from fat; ML, 100% of energy requirement), and caloric restriction (CR, AIN93M with 75% of energy requirement). This dietary intervention continued for six months. At this point, rats were sacrificed and gastrocnemius muscle was collected. CR induced a profound shift in fat and lean mass, and decreased growth factor IGF-1. Muscle qPCR analysis showed a marked decrease in inflammation and TNF (premRNA, mRNA, and protein) by CR, accompanied by Tnf promoter DNA hypermethylation. CR increased expression of histone deacetylase Sirt6 and decreased methyltransferase Suv39h1, together with decreased Tnf promoter and coding region binding of NF- κB and C/EBP-β. Following miRNA database mining, qPCR analysis revealed that CR downregulated the proinflammatory miR-19b and increased the anti-inflammatory miR-181a and its known targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-κB pathway as well as transcriptional and post-transcriptional regulation of Tnf gene.

Original languageEnglish (US)
Article number108598
JournalJournal of Nutritional Biochemistry
Volume91
DOIs
StatePublished - May 2021

Keywords

  • Caloric restriction
  • DNA methylation
  • Transcription factor binding
  • Tumor necrosis factor
  • miRNA

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Nutrition and Dietetics
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats'. Together they form a unique fingerprint.

Cite this