Bypassing LLM Watermarks with Color-Aware Substitutions

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Watermarking approaches are proposed to identify if text being circulated is human- or large language model- (LLM) generated. The state-of-the-art watermarking strategy of Kirchenbauer et al. (2023a) biases the LLM to generate specific (“green”) tokens. However, determining the robustness of this watermarking method under finite (low) edit budgets is an open problem. Additionally, existing attack methods fail to evade detection for longer text segments. We overcome these limitations, and propose Self Color Testing-based Substitution (SCTS), the first “color-aware” attack. SCTS obtains color information by strategically prompting the watermarked LLM and comparing output tokens frequencies. It uses this information to determine token colors, and substitutes green tokens with non-green ones. In our experiments, SCTS successfully evades watermark detection using fewer number of edits than related work. Additionally, we show both theoretically and empirically that SCTS can remove the watermark for arbitrarily long watermarked text.

Original languageEnglish (US)
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages8549-8581
Number of pages33
ISBN (Electronic)9798891760943
DOIs
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period8/11/248/16/24

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Bypassing LLM Watermarks with Color-Aware Substitutions'. Together they form a unique fingerprint.

Cite this