Built Like Bridges: Iron, Steel, and Rivets in the Nineteenth-century Skyscraper: Iron, steel, and rivets in the nineteenth-century skyscraper

Research output: Contribution to journalReview articlepeer-review

Abstract

Thomas Leslie explains that the wind-induced collapse of the Tay Bridge in Scotland in 1879 illustrated the vulnerability of tall metal frames to lateral forces. Built Like Bridges: Iron, Steel, and Rivets in the Nineteenth-century Skyscraper recounts the revolution in structural methods that followed, culminating in the mid-1890s with the invention of the riveted all-steel skeleton frame and the elimination of thick masonry shear walls. The first generation of wind-braced skyscraper metal frames relied on bridgelike systems of cross bracing or shiplike systems of knee bracing, but these structures intruded into rentable spaces. The second generation of frames better exploited the material properties of steel, making stiff connections between girders and columns that, when multiplied throughout the building, could collectively resist lateral forces without such intrusions. Steel—which had replaced cast iron as a structural material by 1895—excelled in this role because it could be rolled into efficient, workable shapes and riveted to form tight connections.
Original languageEnglish (US)
Pages (from-to)234-261
Number of pages28
JournalJournal of the Society of Architectural Historians
Volume69
Issue number2
DOIs
StatePublished - Jun 2010
Externally publishedYes

ASJC Scopus subject areas

  • Architecture
  • Visual Arts and Performing Arts
  • History

Fingerprint

Dive into the research topics of 'Built Like Bridges: Iron, Steel, and Rivets in the Nineteenth-century Skyscraper: Iron, steel, and rivets in the nineteenth-century skyscraper'. Together they form a unique fingerprint.

Cite this