Building an ASR System for Mboshi Using a Cross-Language Definition of Acoustic Units Approach

Odette Scharenborg, Patrick Ebel, Francesco Ciannella, Mark Hasegawa-Johnson, Najim Dehak

Research output: Contribution to conferencePaperpeer-review

Abstract

For many languages in the world, not enough (annotated) speech data is available to train an ASR system. Recently, we proposed a cross-language method for training an ASR system using linguistic knowledge and semi-supervised training. Here, we apply this approach to the low-resource language Mboshi. Using an ASR system trained on Dutch, Mboshi acoustic units were first created using cross-language initialization of the phoneme vectors in the output layer. Subsequently, this adapted system was retrained using Mboshi self-labels. Two training methods were investigated: retraining of only the output layer and retraining the full deep neural network (DNN). The resulting Mboshi system was analyzed by investigating per phoneme accuracies, phoneme confusions, and by visualizing the hidden layers of the DNNs prior to and following retraining with the self-labels. Results showed a fairly similar performance for the two training methods but a better phoneme representation for the fully retrained DNN.

Original languageEnglish (US)
Pages167-171
Number of pages5
DOIs
StatePublished - 2018
Event6th Workshop on Spoken Language Technologies for Under-Resourced Languages, SLTU 2018 - Gurugram, India
Duration: Aug 29 2018Aug 31 2018

Conference

Conference6th Workshop on Spoken Language Technologies for Under-Resourced Languages, SLTU 2018
Country/TerritoryIndia
CityGurugram
Period8/29/188/31/18

Keywords

  • Cross-language adaptation
  • Low-resource automatic speech recognition
  • Semi-supervised training

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Building an ASR System for Mboshi Using a Cross-Language Definition of Acoustic Units Approach'. Together they form a unique fingerprint.

Cite this