Bridging the gap between sample-based and one-shot neural architecture search with BONAS

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok, Tong Zhang

Research output: Contribution to journalConference articlepeer-review

Abstract

Neural Architecture Search (NAS) has shown great potentials in finding better neural network designs. Sample-based NAS is the most reliable approach which aims at exploring the search space and evaluating the most promising architectures. However, it is computationally very costly. As a remedy, the one-shot approach has emerged as a popular technique for accelerating NAS using weight-sharing. However, due to the weight-sharing of vastly different networks, the one-shot approach is less reliable than the sample-based approach. In this work, we propose BONAS (Bayesian Optimized Neural Architecture Search), a sample-based NAS framework which is accelerated using weight-sharing to evaluate multiple related architectures simultaneously. Specifically, we apply a Graph Convolutional Network predictor as surrogate model for Bayesian Optimization to select multiple related candidate models in each iteration. We then apply weight-sharing to train multiple candidate models simultaneously. This approach not only accelerates the traditional sample-based approach significantly, but also keeps its reliability. This is because weight-sharing among related architectures is more reliable than that in the one-shot approach. Extensive experiments are conducted to verify the effectiveness of our method over competing algorithms.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Bridging the gap between sample-based and one-shot neural architecture search with BONAS'. Together they form a unique fingerprint.

Cite this