Bridging across cognitive training and brain plasticity: A neurally inspired computational model of interactive skill learning

Wai Tat Fu, Hyunkyu Lee, Walter R. Boot, Arthur F. Kramer

Research output: Contribution to journalArticlepeer-review

Abstract

This article reviews recent empirical and brain imaging data on effects of cognitive training methods on complex interactive skill learning, and presents a neurally inspired computational model that characterizes the effects of these training methods. In particular, the article focuses on research that shows that variable priority training (VPT), which requires learners to shift their priorities to different task components during training, often leads to better acquisition and retention of skills than fixed priority training (FPT). However, there is only weak evidence that shows that VPT can enhance transfer of complex interactive skills to untrained situations. Brain imaging studies show that VPT leads to significantly lower activations and a higher reduction of activities in attentional control areas after training than FPT. Research also shows that the volume of the striatum predicts the learning effects, but only in VPT. The computational model, developed based on learning mechanisms at the neural level, bridges across the empirical and the braining imaging results by explaining the effects of VPT and FPT at both the behavioral and neural levels. The results were discussed in the context of previous findings on cognitive training.

Original languageEnglish (US)
Pages (from-to)225-236
Number of pages12
JournalWiley Interdisciplinary Reviews: Cognitive Science
Volume4
Issue number2
DOIs
StatePublished - Mar 2013

ASJC Scopus subject areas

  • General Neuroscience
  • General Psychology

Fingerprint

Dive into the research topics of 'Bridging across cognitive training and brain plasticity: A neurally inspired computational model of interactive skill learning'. Together they form a unique fingerprint.

Cite this