TY - JOUR
T1 - Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips
AU - Dong, Xingchen
AU - Hu, Xiangming
AU - Bao, Yan
AU - Li, Guo
AU - Yang, Xiao Dong
AU - Slauch, James M.
AU - Chen, Lin Feng
N1 - Publisher Copyright:
© 2021 Dong et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
PY - 2021/2
Y1 - 2021/2
N2 - NLRC4 inflammasome activation and the subsequent maturation of IL-1β and IL-18 are critical for protection against infection by bacterial pathogens. The epigenetic regulator Brd4 has emerged as a key player in inflammation by regulating the expression of inflammatory cytokines. However, whether Brd4 has any role in inflammasome activation remains undetermined. Here, we demonstrated that Brd4 is an important regulator of NLRC4 inflammasome activation in response to Salmonella typhimurium infection. Brd4-deficient bone marrow–derived macrophages (BMDMs) displayed impaired caspase-1 activation, ASC oligomerization, IL-1β maturation, gasdermin-D cleavage, and pyroptosis in response to S. typhimurium infection. RNA sequencing and RT-PCR results revealed that the transcription of Naips was decreased in Brd4-deficient BMDMs. Brd4 formed a complex with IRF8/PU.1 and bound to the IRF8 and PU.1 binding motifs on the promoters of Naips to maintain the expression of Naips. Furthermore, myeloid lineage–specific Brd4 conditional knockout mice were more susceptible to S. typhimurium infection with increased mortality, bacterial loads, and tissue damage; impaired inflammasome-dependent cytokine production; and pyroptosis. Our studies identify a novel function of Brd4 in innate immunity by controlling inflammasome-mediated cytokine release and pyroptosis to effectively battle S. typhimurium infection.
AB - NLRC4 inflammasome activation and the subsequent maturation of IL-1β and IL-18 are critical for protection against infection by bacterial pathogens. The epigenetic regulator Brd4 has emerged as a key player in inflammation by regulating the expression of inflammatory cytokines. However, whether Brd4 has any role in inflammasome activation remains undetermined. Here, we demonstrated that Brd4 is an important regulator of NLRC4 inflammasome activation in response to Salmonella typhimurium infection. Brd4-deficient bone marrow–derived macrophages (BMDMs) displayed impaired caspase-1 activation, ASC oligomerization, IL-1β maturation, gasdermin-D cleavage, and pyroptosis in response to S. typhimurium infection. RNA sequencing and RT-PCR results revealed that the transcription of Naips was decreased in Brd4-deficient BMDMs. Brd4 formed a complex with IRF8/PU.1 and bound to the IRF8 and PU.1 binding motifs on the promoters of Naips to maintain the expression of Naips. Furthermore, myeloid lineage–specific Brd4 conditional knockout mice were more susceptible to S. typhimurium infection with increased mortality, bacterial loads, and tissue damage; impaired inflammasome-dependent cytokine production; and pyroptosis. Our studies identify a novel function of Brd4 in innate immunity by controlling inflammasome-mediated cytokine release and pyroptosis to effectively battle S. typhimurium infection.
UR - http://www.scopus.com/inward/record.url?scp=85101339660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101339660&partnerID=8YFLogxK
U2 - 10.1083/JCB.202005148
DO - 10.1083/JCB.202005148
M3 - Article
C2 - 33535228
AN - SCOPUS:85101339660
SN - 0021-9525
VL - 220
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 3
M1 - e202005148
ER -