Bounding Quantum Capacities via Partial Orders and Complementarity

Christoph Hirche, Felix Leditzky

Research output: Contribution to journalArticlepeer-review

Abstract

Quantum capacities are fundamental quantities that are notoriously hard to compute and can exhibit surprising properties such as superadditivity. Thus, a vast amount of literature is devoted to finding tight and computable bounds on these capacities. We add a new viewpoint by giving operationally motivated bounds on several capacities, including the quantum capacity and private capacity of a quantum channel and the one-way distillable entanglement and private key of a quantum state. These bounds are generally phrased in terms of capacity quantities involving the complementary channel or state. As a tool to obtain these bounds, we discuss partial orders on quantum channels and states, such as the less noisy and the more capable order. Our bounds help to further understand the interplay between different capacities, as they give operational limitations on superadditivity and the difference between capacities in terms of the information-theoretic properties of the complementary channel or state. They can also be used as a new approach towards numerically bounding capacities, as discussed with some examples.

Original languageEnglish (US)
Pages (from-to)283-297
Number of pages15
JournalIEEE Transactions on Information Theory
Volume69
Issue number1
DOIs
StatePublished - Jan 1 2023

Keywords

  • Coding and information theory

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Bounding Quantum Capacities via Partial Orders and Complementarity'. Together they form a unique fingerprint.

Cite this