Bootstrapping a neural conversational agent with dialogue self-play, crowdsourcing and on-line reinforcement learning

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, Gokhan Tür

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

End-to-end neural models show great promise towards building conversational agents that are trained from data and on-line experience using supervised and reinforcement learning. However, these models require a large corpus of dialogues to learn effectively. For goal-oriented dialogues, such datasets are expensive to collect and annotate, since each task involves a separate schema and database of entities. Further, the Wizard-of-Oz approach commonly used for dialogue collection does not provide sufficient coverage of salient dialogue flows, which is critical for guaranteeing an acceptable task completion rate in consumer-facing conversational agents. In this paper, we study a recently proposed approach for building an agent for arbitrary tasks by combining dialogue self-play and crowd-sourcing to generate fully-annotated dialogues with diverse and natural utterances. We discuss the advantages of this approach for industry applications of conversational agents, wherein an agent can be rapidly bootstrapped to deploy in front of users and further optimized via interactive learning from actual users of the system.

Original languageEnglish (US)
Title of host publicationIndustry Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages41-51
Number of pages11
ISBN (Electronic)9781948087308
StatePublished - 2018
Externally publishedYes
Event2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018 - New Orleans, United States
Duration: Jun 1 2018Jun 6 2018

Publication series

NameNAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference
Volume3

Conference

Conference2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018
Country/TerritoryUnited States
CityNew Orleans
Period6/1/186/6/18

ASJC Scopus subject areas

  • Linguistics and Language
  • Language and Linguistics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Bootstrapping a neural conversational agent with dialogue self-play, crowdsourcing and on-line reinforcement learning'. Together they form a unique fingerprint.

Cite this