Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer

Yuanyi Zhong, Jianfeng Wang, Jian Peng, Lei Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of 59.7 % detection performance on the VOC test set and an mAP of 60.2 % after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code:

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
Number of pages17
ISBN (Print)9783030585730
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: Aug 23 2020Aug 28 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12371 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom


  • Object detection
  • Semi-supervised
  • Transfer learning
  • Weakly supervised

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer'. Together they form a unique fingerprint.

Cite this