Abstract
Aim: To characterize the ontogeny of circulating IGF-I, the IGF binding proteins (IGFBPs) and biochemical markers of bone turnover in dexamethasone (DEX)-treated preterm infants with chronic lung disease. Methods: Plasma and urine samples from 17 infants were obtained prior to DEX, after 9-12 days of DEX and 10 days after the completion of DEX to assess plasma IGF-I, IGFBPs, osteocalcin and urinary N-telopeptide. Nutrient intakes and growth were monitored from birth until term corrected age at which time body composition was evaluated by dual energy X-ray absorptiometry. Results: Although nutrient intakes did not differ during or after DEX, weight gain (115 vs. 174 g/week) and length gain (0.7 vs. 1.0 cm/week) were higher after DEX treatment. Plasma IGF-I, IGFBP-3 and osteocalcin increased over time. N-telopeptide was the only biochemical parameter which appeared to be suppressed during DEX (1342 nM bone collagen equivalents/mM creatinine vs. 2486 (pre-DEX) and 2292 (post-DEX)). At term corrected age, bone mineral content was lower in dexamethasone-treated infants compared to preterm and term reference infants. Conclusion: Changes in circulating IGFBP-2 and IGFBP-3 paralleled the changes reported in non-steroid-treated infants; however, it remains uncertain whether the natural rise in IGF-I was suppressed by DEX treatment. Assessment of these circulating components provided limited insight into the mechanisms by which DEX alters growth and bone turnover. Copyright (C) 1999 Elsevier Science Ireland Ltd.
Original language | English (US) |
---|---|
Pages (from-to) | 127-141 |
Number of pages | 15 |
Journal | Early Human Development |
Volume | 56 |
Issue number | 2-3 |
DOIs | |
State | Published - Dec 1999 |
Keywords
- Bone
- Bronchopulmonary dysplasia
- Dexamethasone
- IGF-I
- Premature infants
ASJC Scopus subject areas
- Pediatrics, Perinatology, and Child Health
- Obstetrics and Gynecology