TY - JOUR
T1 - BMO-estimates for non-commutative vector valued Lipschitz functions
AU - Caspers, M.
AU - Junge, M.
AU - Sukochev, F.
AU - Zanin, D.
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - We construct Markov semi-groups T and associated BMO-spaces on a finite von Neumann algebra (M,τ) and obtain results for perturbations of commutators and non-commutative Lipschitz estimates. In particular, we prove that for any A∈M self-adjoint and f:R→R Lipschitz there is a Markov semi-group T such that for x∈M, ‖[f(A),x]‖bmo(M,T)≤cabs‖f′‖∞‖[A,x]‖∞. We obtain an analogue of this result for more general von Neumann valued-functions f:Rn→N by imposing Hörmander-Mikhlin type assumptions on f. In establishing these result we show that Markov dilations of Markov semi-groups have certain automatic continuity properties. We also show that Markov semi-groups of double operator integrals admit (standard and reversed) Markov dilations.
AB - We construct Markov semi-groups T and associated BMO-spaces on a finite von Neumann algebra (M,τ) and obtain results for perturbations of commutators and non-commutative Lipschitz estimates. In particular, we prove that for any A∈M self-adjoint and f:R→R Lipschitz there is a Markov semi-group T such that for x∈M, ‖[f(A),x]‖bmo(M,T)≤cabs‖f′‖∞‖[A,x]‖∞. We obtain an analogue of this result for more general von Neumann valued-functions f:Rn→N by imposing Hörmander-Mikhlin type assumptions on f. In establishing these result we show that Markov dilations of Markov semi-groups have certain automatic continuity properties. We also show that Markov semi-groups of double operator integrals admit (standard and reversed) Markov dilations.
KW - Commutator estimates
KW - Non-commutative BMO-spaces
KW - Non-commutative Lp-spaces
KW - Quantum Markov semi-groups
UR - http://www.scopus.com/inward/record.url?scp=85072699944&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072699944&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2019.108317
DO - 10.1016/j.jfa.2019.108317
M3 - Article
AN - SCOPUS:85072699944
SN - 0022-1236
VL - 278
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 3
M1 - 108317
ER -