TY - GEN
T1 - Black-Box Non-interactive Non-malleable Commitments
AU - Garg, Rachit
AU - Khurana, Dakshita
AU - Lu, George
AU - Waters, Brent
N1 - Publisher Copyright:
© 2021, International Association for Cryptologic Research.
PY - 2021
Y1 - 2021
N2 - There has been recent exciting progress on building non-interactive non-malleable commitments from judicious assumptions. All proposed approaches proceed in two steps. First, obtain simple “base” commitment schemes for very small tag/identity spaces based on a various sub-exponential hardness assumptions. Next, assuming sub-exponential non-interactive witness indistinguishable proofs (NIWIs), and variants of keyless collision resistant hash functions, construct non-interactive compilers that convert tag-based non-malleable commitments for a small tag space into tag-based non-malleable commitments for a larger tag space. We propose the first black-box construction of non-interactive non-malleable commitments. Our key technical contribution is a novel implementation of the non-interactive proof of consistency required for tag amplification. Prior to our work, the only known approach to tag amplification without setup and with black-box use of the base scheme (Goyal, Lee, Ostrovsky and Visconti, FOCS 2012) added multiple rounds of interaction. Our construction satisfies the strongest known definition of non-malleability, i.e., CCA (chosen commitment attack) security. In addition to being black-box, our approach dispenses with the need for sub-exponential NIWIs, that was common to all prior work. Instead of NIWIs, we rely on sub-exponential hinting PRGs which can be obtained based on a broad set of assumptions such as sub-exponential CDH or LWE.
AB - There has been recent exciting progress on building non-interactive non-malleable commitments from judicious assumptions. All proposed approaches proceed in two steps. First, obtain simple “base” commitment schemes for very small tag/identity spaces based on a various sub-exponential hardness assumptions. Next, assuming sub-exponential non-interactive witness indistinguishable proofs (NIWIs), and variants of keyless collision resistant hash functions, construct non-interactive compilers that convert tag-based non-malleable commitments for a small tag space into tag-based non-malleable commitments for a larger tag space. We propose the first black-box construction of non-interactive non-malleable commitments. Our key technical contribution is a novel implementation of the non-interactive proof of consistency required for tag amplification. Prior to our work, the only known approach to tag amplification without setup and with black-box use of the base scheme (Goyal, Lee, Ostrovsky and Visconti, FOCS 2012) added multiple rounds of interaction. Our construction satisfies the strongest known definition of non-malleability, i.e., CCA (chosen commitment attack) security. In addition to being black-box, our approach dispenses with the need for sub-exponential NIWIs, that was common to all prior work. Instead of NIWIs, we rely on sub-exponential hinting PRGs which can be obtained based on a broad set of assumptions such as sub-exponential CDH or LWE.
UR - http://www.scopus.com/inward/record.url?scp=85111434099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111434099&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-77883-5_6
DO - 10.1007/978-3-030-77883-5_6
M3 - Conference contribution
AN - SCOPUS:85111434099
SN - 9783030778828
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 159
EP - 185
BT - Advances in Cryptology – EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
A2 - Canteaut, Anne
A2 - Standaert, François-Xavier
PB - Springer
T2 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2021
Y2 - 17 October 2021 through 21 October 2021
ER -