Biomechanical Evaluation of Pneumatic Sleeve Orthosis for Lofstrand Crutches

Chenzhang Xiao, Omid Jahanian, Brooke A. Slavens, Elizabeth T. Hsiao-Wecksler

Research output: Contribution to journalArticlepeer-review


Crutch walking, especially when using a swing-through gait pattern, is associated with high, repetitive joint forces, hyperextension/ulnar deviation of the wrist, and excessive palmar pressure that compresses the median nerve. To reduce these adverse effects, we designed a pneumatic sleeve orthosis that utilized a soft pneumatic actuator and secured to the crutch cuff for long-term Lofstrand crutch users. Eleven non-disabled young adult participants performed both swing-through and reciprocal crutch gait patterns with and without the custom orthosis for comparison. Wrist kinematics, crutch forces, and palmar pressures were analyzed. Significantly different wrist kinematics, crutch kinetics, and palmar pressure distribution were observed in swing-through gait trials with orthosis use (p <0.001, p=0.01, p=0.03, respectively). Reductions in peak and mean wrist extension (7%, 6%), wrist range of motion (23%), and peak and mean ulnar deviation (26%, 32%) indicate improved wrist posture. Significantly increased peak and mean crutch cuff forces suggest increased load sharing between the forearm and cuff. Reduced peak and mean palmar pressures (8%, 11%) and shifted peak palmar pressure location toward the adductor pollicis denote a redirection of pressure away from the median nerve. In reciprocal gait trials, non-significant but similar trends were observed in wrist kinematics and palmar pressure distribution, whereas a significant effect of load sharing was noticed (p=0.01). These results suggest that Lofstrand crutches modified with orthosis may improve wrist posture, reduce wrist and palmar load, redirect palmar pressure away from the median nerve, and thus may reduce or prevent the onset of wrist injuries.

Original languageEnglish (US)
Pages (from-to)789-797
Number of pages9
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
StatePublished - 2023
Externally publishedYes


  • Orthotics
  • biomehcanics
  • soft robotics

ASJC Scopus subject areas

  • Rehabilitation
  • General Neuroscience
  • Internal Medicine
  • Biomedical Engineering


Dive into the research topics of 'Biomechanical Evaluation of Pneumatic Sleeve Orthosis for Lofstrand Crutches'. Together they form a unique fingerprint.

Cite this