Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors

Hua Wang, Alexander J. Najibi, Miguel C. Sobral, Bo Ri Seo, Jun Yong Lee, David Wu, Aileen Weiwei Li, Catia S. Verbeke, David J. Mooney

Research output: Contribution to journalArticlepeer-review


Poorly immunogenic tumors, including triple negative breast cancers (TNBCs), remain resistant to current immunotherapies, due in part to the difficulty of reprogramming the highly immunosuppressive tumor microenvironment (TME). Here we show that peritumorally injected, macroporous alginate gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) for concentrating dendritic cells (DCs), CpG oligonucleotides, and a doxorubicin-iRGD conjugate enhance the immunogenic death of tumor cells, increase systemic tumor-specific CD8 + T cells, repolarize tumor-associated macrophages towards an inflammatory M1-like phenotype, and significantly improve antitumor efficacy against poorly immunogenic TNBCs. This system also prevents tumor recurrence after surgical resection and results in 100% metastasis-free survival upon re-challenge. This chemo-immunotherapy that concentrates DCs to present endogenous tumor antigens generated in situ may broadly serve as a facile platform to modulate the suppressive TME, and enable in situ personalized cancer vaccination.

Original languageEnglish (US)
Article number5696
JournalNature communications
Issue number1
StatePublished - Dec 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors'. Together they form a unique fingerprint.

Cite this