Biomaterial-assisted targeted modulation of immune cells in cancer treatment

Hua Wang, David J. Mooney

Research output: Contribution to journalReview articlepeer-review

Abstract

The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.

Original languageEnglish (US)
Pages (from-to)761-772
Number of pages12
JournalNature Materials
Volume17
Issue number9
DOIs
StatePublished - Sep 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Biomaterial-assisted targeted modulation of immune cells in cancer treatment'. Together they form a unique fingerprint.

Cite this