Bioinspired tuning of hydrogel permeability-rigidity dependency for 3D cell culture

Min Kyung Lee, Max H. Rich, Kwanghyun Baek, Jonghwi Lee, Hyunjoon Kong

Research output: Contribution to journalArticlepeer-review

Abstract

Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

Original languageEnglish (US)
Article number8948
JournalScientific reports
Volume5
DOIs
StatePublished - Mar 2015

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Bioinspired tuning of hydrogel permeability-rigidity dependency for 3D cell culture'. Together they form a unique fingerprint.

Cite this