Biohydrogenation of unsaturated fatty acids in continuous culture fermenters during digestion of orchardgrass or red clover with three levels of ground corn supplementation

J. J. Loor, W. H. Hoovert, T. K. Miller-Webstert, J. H. Herbein, C. E. Polan

Research output: Contribution to journalArticlepeer-review

Abstract

Diet digestibility and outputs of biohydrogenation intermediates were assessed in a continuous culture of ruminal microorganisms. Orchardgrass or red clover harvested and frozen during spring or fall served as the primary substrates for fermentation. During 10-d incubations, fermenters were fed thawed forage (50 g of DM/d), forage (42 g/d) plus 8 g/d of corn, or forage (34 g/d) plus 16 g/d of corn. Effluents from the last 3 d of incubation were composited for analyses. Starch input increased from 5 to 27% of DM as corn input increased from 0 to 16 g/d. Corn input reduced (P < 0.01) pH, increased (P < 0.01) microbial DM yield, and increased (P = 0.01) digestibility of DM, NDF, CP, and nonstructural carbohydrates. Overall, apparent hydrogenation (percentage) of cis9-18:1, 18:2n-6, and 18:3n-3 was greater (P < 0.05) with orchardgrass than clover. Hydrogenation of cis9-18:1 and 18:2n-6 increased (P = 0.01), but hydrogenation of 18:3n-3 decreased (P = 0.01) linearly due to corn input, regardless of forage. As a result, output of trans11,cis15-18:2 also decreased (P = 0.01). Average output of cis9,trans11-18:2 was greater (P = 0.01) for clover (1.3 mg/d) compared with orchardgrass (0.6 mg/d), but corn input with either forage increased (P = 0.01) cis9,trans11-18:2 output by 205%. Output of trans 11-18:1 was greater (P = 0.01) from orchardgrass compared with clover (174 vs. 90 mg/d), but corn increased (P = 0.01) trans11-18:1 output only from clover fermentations. Output of trans10-18:1 was greater (P = 0.01) in response to orchardgrass compared with clover (10 vs. 4 mg/d), but corn addition doubled the output regardless of forage type. Output of trans10,cis12-18:2, which did not differ due to forage type, increased (P = 0.01) twofold in response to corn. Cis9,cis11-18:2 was a primary conjugated isomer produced from forage fermentations, but its output decreased (P = 0.03) in response to corn input. When inputs of 18:2n-6 plus 18:3n-3 were less than 0.9% of total DM (clover), hydrogenation was low (87%). When 18:2n-6 plus 18:3n-3 inputs were from 1.2 to 1.5% of total DM (orchardgrass), hydrogenation averaged 96%. Despite greater hydrogenation, incremental additions of cis9-18:1 and 18:2n-6 from corn grain increased (P < 0.05) outputs of trans10-18:1, trans11-18:1, trans10,cis12-18:2, cis9,trans11-18:2, and trans,trans-18:2 in effluent. Results suggest that forage species alone or in combination with corn grain can alter hydrogenation and profiles of intermediates to varying degrees.

Original languageEnglish (US)
Pages (from-to)1611-1627
Number of pages17
JournalJournal of animal science
Volume81
Issue number6
DOIs
StatePublished - Jun 2003

Keywords

  • Dactylis glomerata
  • Digestion
  • Hydrogenation
  • Microbial yield
  • Trans fatty acids
  • Trifolium pratense

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint

Dive into the research topics of 'Biohydrogenation of unsaturated fatty acids in continuous culture fermenters during digestion of orchardgrass or red clover with three levels of ground corn supplementation'. Together they form a unique fingerprint.

Cite this