TY - GEN
T1 - Binary classification with karmic, threshold-quasi-concave metrics
AU - Yan, Bowei
AU - Koyejo, Oluwasanmi
AU - Zhong, Kai
AU - Ravikumar, Pradeep
N1 - Publisher Copyright:
© 35th International Conference on Machine Learning, ICML 2018.All Rights Reserved.
PY - 2018
Y1 - 2018
N2 - Complex performance measures, beyond the popular measure of accuracy, are increasingly being used in the context of binary classification. These complex performance measures are typically not even decomposable, that is, the loss evaluated on a batch of samples cannot typically be expressed as a sum or average of losses evaluated at individual samples, which in turn requires new theoretical and methodological developments beyond standard treatments of supervised learning. In this paper, we advance this understanding of binary classification for complex performance measures by identifying two key properties: a so-called Karmic property, and a more technical threshold-quasiconcavity property, which we show is milder than existing structural assumptions imposed on performance measures. Under these properties, we show that the Bayes optimal classifier is a threshold function of the conditional probability of positive class. We then leverage this result to come up with a computationally practical plug-in classifier, via a novel threshold estimator, and further, provide a novel statistical analysis of classification error with respect to complex performance measures.
AB - Complex performance measures, beyond the popular measure of accuracy, are increasingly being used in the context of binary classification. These complex performance measures are typically not even decomposable, that is, the loss evaluated on a batch of samples cannot typically be expressed as a sum or average of losses evaluated at individual samples, which in turn requires new theoretical and methodological developments beyond standard treatments of supervised learning. In this paper, we advance this understanding of binary classification for complex performance measures by identifying two key properties: a so-called Karmic property, and a more technical threshold-quasiconcavity property, which we show is milder than existing structural assumptions imposed on performance measures. Under these properties, we show that the Bayes optimal classifier is a threshold function of the conditional probability of positive class. We then leverage this result to come up with a computationally practical plug-in classifier, via a novel threshold estimator, and further, provide a novel statistical analysis of classification error with respect to complex performance measures.
UR - http://www.scopus.com/inward/record.url?scp=85057309063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057309063&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85057309063
T3 - 35th International Conference on Machine Learning, ICML 2018
SP - 8792
EP - 8804
BT - 35th International Conference on Machine Learning, ICML 2018
A2 - Dy, Jennifer
A2 - Krause, Andreas
PB - International Machine Learning Society (IMLS)
T2 - 35th International Conference on Machine Learning, ICML 2018
Y2 - 10 July 2018 through 15 July 2018
ER -