Big-Bang Nucleosynthesis after Planck

Brian D. Fields, Keith A. Olive, Tsung Han Yeh, Charles Young

Research output: Contribution to journalArticlepeer-review

Abstract

We assess the status of big-bang nucleosynthesis (BBN) in light of the final Planck data release and other recent developments, and in anticipation of future measurements. Planck data from the recombination era fix the cosmic baryon density to 0.9% precision, and now damping tail measurements determine the helium abundance and effective number of neutrinos with precision approaching that of astronomical and BBN determinations respectively. All three parameters are related by BBN . In addition, new high-redshift measurements give D/H to better precision than theoretical predictions, and new Li/H data reconfirm the lithium problem. We present new 7Be(n,p)7Li rates using new neutron capture measurements; we have also examined the effect of proposed changes in the d(p,γ)3He rates. Using these results we perform a series of likelihood analyses. We assess BBN/CMB consistency, with attention to how our results depend on the choice of Planck data, as well as how the results depend on the choice of non-BBN, non-Planck data sets. Most importantly the lithium problem remains, and indeed is more acute given the very tight D/H observational constraints; new neutron capture data reveals systematics that somewhat increases uncertainty and thus slightly reduces but does not essentially change the problem. We confirm that d(p,γ)3He theoretical rates brings D/H out of agreement and slightly increases 7Li new experimental data are needed at BBN energies. Setting the lithium problem aside, we find the effective number of neutrino species at BBN is Nν = 2.86 ± 0.15. Future CMB Stage\nobreakdash-4 measurements promise substantial improvements in BBN parameters: Helium abundance determinations will be competitive with the best astronomical determinations, and Neff will approach sensitivities capable of detecting the effects of Standard Model neutrino heating of the primordial plasma.

Original languageEnglish (US)
Article number010
JournalJournal of Cosmology and Astroparticle Physics
Volume2020
Issue number3
DOIs
StatePublished - Mar 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics

Fingerprint

Dive into the research topics of 'Big-Bang Nucleosynthesis after Planck'. Together they form a unique fingerprint.

Cite this