Beyond the single neuron convex barrier for neural network certification

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin Vechev

Research output: Contribution to journalConference articlepeer-review

Abstract

We propose a new parametric framework, called k-ReLU, for computing precise and scalable convex relaxations used to certify neural networks. The key idea is to approximate the output of multiple ReLUs in a layer jointly instead of separately. This joint relaxation captures dependencies between the inputs to different ReLUs in a layer and thus overcomes the convex barrier imposed by the single neuron triangle relaxation and its approximations. The framework is parametric in the number of k ReLUs it considers jointly and can be combined with existing verifiers in order to improve their precision. Our experimental results show that k-ReLU enables significantly more precise certification than existing state-of-the-art verifiers while maintaining scalability.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Cite this