Beyond localized graph neural networks: An attributed motif regularization framework

Aravind Sankar, Junting Wang, Adit Krishnan, Hari Sundaram

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present InfoMotif, a new semi-supervised, motif-regularized, learning framework over graphs. We overcome two key limitations of message passing in popular graph neural networks (GNNs): localization (a k-layer GNN cannot utilize features outside the k-hop neighborhood of the labeled training nodes) and over-smoothed (structurally indistinguishable) representations. We propose the concept of attributed structural roles of nodes based on their occurrence in different network motifs, independent of network proximity. Two nodes share attributed structural roles if they participate in topologically similar motif instances over co-varying sets of attributes. Further, InfoMotif achieves architecture independence by regularizing the node representations of arbitrary GNNs via mutual information maximization. Our training curriculum dynamically prioritizes multiple motifs in the learning process without relying on distributional assumptions in the underlying graph or the learning task. We integrate three state-of-the-art GNNs in our framework, to show significant gains (3-10% accuracy) across six diverse, real-world datasets. We see stronger gains for nodes with sparse training labels and diverse attributes in local neighborhood structures.

Original languageEnglish (US)
Title of host publicationProceedings - 20th IEEE International Conference on Data Mining, ICDM 2020
EditorsClaudia Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages472-481
Number of pages10
ISBN (Electronic)9781728183169
DOIs
StatePublished - Nov 2020
Event20th IEEE International Conference on Data Mining, ICDM 2020 - Virtual, Sorrento, Italy
Duration: Nov 17 2020Nov 20 2020

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2020-November
ISSN (Print)1550-4786

Conference

Conference20th IEEE International Conference on Data Mining, ICDM 2020
Country/TerritoryItaly
CityVirtual, Sorrento
Period11/17/2011/20/20

Keywords

  • Graph Neural Network
  • Mutual Information
  • Network Motif
  • Representation Learning
  • Structural Role

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Beyond localized graph neural networks: An attributed motif regularization framework'. Together they form a unique fingerprint.

Cite this