Beta process multiple kernel learning

Bingbing Ni, Teng Li, Pierre Moulin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In kernel based learning, the kernel trick transforms the original representation of a feature instance into a vector of similarities with the training feature instances, known as kernel representation. However, feature instances are sometimes ambiguous and the kernel representation calculated based on them do not possess any discriminative information, which can eventually harm the trained classifier. To address this issue, we propose to automatically select good feature instances when calculating the kernel representation in multiple kernel learning. Specifically, for the kernel representation calculated for each input feature instance, we multiply it element-wise with a latent binary vector named as instance selection variables, which targets at selecting good instances and attenuate the effect of ambiguous ones in the resulting new kernel representation. Beta process is employed for generating the prior distribution for the latent instance selection variables. We then propose a Bayesian graphical model which integrates both MKL learning and inference for the distribution of the latent instance selection variables. Variational inference is derived for model learning under a max-margin principle. Our method is called Beta process multiple kernel learning. Extensive experiments demonstrate the effectiveness of our method on instance selection and its high discriminative capability for various classification problems in vision.

Original languageEnglish (US)
Title of host publicationProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublisherIEEE Computer Society
Pages963-970
Number of pages8
ISBN (Electronic)9781479951178, 9781479951178
DOIs
StatePublished - Sep 24 2014
Event27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, United States
Duration: Jun 23 2014Jun 28 2014

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
Country/TerritoryUnited States
CityColumbus
Period6/23/146/28/14

Keywords

  • Beta process
  • classification
  • instance selection
  • multiple kernel learning
  • variational inference

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Beta process multiple kernel learning'. Together they form a unique fingerprint.

Cite this