Beam steering in photonic crystal vertical cavity semiconductor laser arrays

Kent D Choquette, James J. Raftery, Ann C. Lehman

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Coherently coupled arrays of vertical cavity surface emitting lasers (VCSELs) offer the potential of extended area coherent sources with high spectral purity, useful in a variety of applications in the high power (laser radar, optical communications, steerable sources) and low power (image processing, spectroscopic sensing, optical logic) regimes. A recently developed method for providing optical confinement is the introduction of a two-dimensional photonic crystal (PhC) pattern with a defect, etched into the top distributed Bragg reflector, to define multiple defect cavities in a VCSEL. A major achievement of this work is coherent coupling between the defect cavities, with both out-of-phase and in-phase coherent coupling. A qualitative and quantitative understanding of the optical characteristics of PhC VCSEL arrays was developed and demonstrated by the agreement between simulation and experimental results. We show the relative phase difference between the defect cavities can be varied with injection current during both continuous-wave and pulsed operation. This directly leads to the ability to dynamically vary the angular steering the far field. Electronic beam steering from photonic crystal VCSEL sources are applicable to many communication applications.

Original languageEnglish (US)
Title of host publication2006 IEEE Aerospace Conference
StatePublished - 2006
Event2006 IEEE Aerospace Conference - Big Sky, MT, United States
Duration: Mar 4 2006Mar 11 2006

Publication series

NameIEEE Aerospace Conference Proceedings
ISSN (Print)1095-323X


Other2006 IEEE Aerospace Conference
Country/TerritoryUnited States
CityBig Sky, MT

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science


Dive into the research topics of 'Beam steering in photonic crystal vertical cavity semiconductor laser arrays'. Together they form a unique fingerprint.

Cite this