Bayesian structure learning for dynamic brain connectivity

Michael Riis Andersen, Ole Winther, Lars Kai Hansen, Russell Poldrack, Oluwasanmi Koyejo

Research output: Contribution to conferencePaper

Abstract

Human brain activity as measured by fMRI exhibits strong correlations between brain regions which are believed to vary over time. Importantly, dynamic connectivity has been linked to individual differences in physiology, psychology and behavior, and has shown promise as a biomarker for disease. The state of the art in computational neuroimaging is to estimate the brain networks as relatively short sliding window covariance matrices, which leads to high variance estimates, thereby resulting in high overall error. This manuscript proposes a novel Bayesian model for dynamic brain connectivity. Motivated by the underlying neuroscience, the model estimates covariances which vary smoothly over time, with an instantaneous decomposition into a collection of spatially sparse components – resulting in parsimonious and highly interpretable estimates of dynamic brain connectivity. Simulated results are presented to illustrate the performance of the model even when it is mis-specified. For real brain imaging data with unknown ground truth, in addition to qualitative evaluation, we devise a simple classification task which suggests that the estimated brain networks better capture the underlying structure.

Original languageEnglish (US)
Pages1436-1446
Number of pages11
StatePublished - Jan 1 2018
Event21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spain
Duration: Apr 9 2018Apr 11 2018

Conference

Conference21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
CountrySpain
CityPlaya Blanca, Lanzarote, Canary Islands
Period4/9/184/11/18

ASJC Scopus subject areas

  • Statistics and Probability
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Bayesian structure learning for dynamic brain connectivity'. Together they form a unique fingerprint.

  • Cite this

    Andersen, M. R., Winther, O., Hansen, L. K., Poldrack, R., & Koyejo, O. (2018). Bayesian structure learning for dynamic brain connectivity. 1436-1446. Paper presented at 21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018, Playa Blanca, Lanzarote, Canary Islands, Spain.