Bayesian Invariant Risk Minimization

Yong Lin, Hanze Dong, Hao Wang, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Generalization under distributional shift is an open challenge for machine learning. Invariant Risk Minimization (IRM) is a promising framework to tackle this issue by extracting invariant features. However, despite the potential and popularity of IRM, recent works have reported negative results of it on deep models. We argue that the failure can be primarily attributed to deep models' tendency to overfit the data. Specifically, our theoretical analysis shows that IRM degenerates to empirical risk minimization (ERM) when overfitting occurs. Our empirical evidence also provides supports: IRM methods that work well in typical settings significantly deteriorate even if we slightly enlarge the model size or lessen the training data. To alleviate this issue, we propose Bayesian Invariant Risk Min-imization (BIRM) by introducing Bayesian inference into the IRM. The key motivation is to estimate the penalty of IRM based on the posterior distribution of classifiers (as opposed to a single classifier), which is much less prone to overfitting. Extensive experimental results on four datasets demonstrate that BIRM consistently outperforms the existing IRM baselines significantly.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages16000-16009
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Keywords

  • Representation learning
  • Statistical methods

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Bayesian Invariant Risk Minimization'. Together they form a unique fingerprint.

Cite this