TY - GEN
T1 - Battery Thermal Management Systems Design Considering Model Fidelity Levels and Design Optimization Utility
AU - Sharmili, Nowsheen
AU - Lee, Yong Hoon
AU - Allison, James T.
N1 - Publisher Copyright:
© 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2024
Y1 - 2024
N2 - The electrification of transportation requires a robust and efficient design of battery thermal management systems (BTMSs). This study introduces a resistance-capacitance (RC) based reduced order model (ROM) with additional auxiliary state variables for accurately capturing transient thermal behavior. The study explores the trade-offs between model fidelity and utility in BTMS control co-design (CCD) applications. BTMSs manage the temperature to ensure battery performance, safety, and longevity. Although computational fluid dynamics (CFD) is useful in steady and transient battery thermal analysis, full-fidelity CFD simulations are computationally expensive, particularly within CCD optimization loops. RC-based ROMs commonly used in early-stage design can mitigate the computational effort. These models can be formulated at different fidelity levels by representing various battery components as single or multiple LC bodies connected by resistance elements. The proposed augmented RC-based ROM enhances transient simulation accuracy while maintaining low computational cost, thereby, facilitating thorough design exploration using the CCD approach. This study focuses on comparing model fidelity levels, and their quantifiable utility measures, such as design accuracy and computational cost.
AB - The electrification of transportation requires a robust and efficient design of battery thermal management systems (BTMSs). This study introduces a resistance-capacitance (RC) based reduced order model (ROM) with additional auxiliary state variables for accurately capturing transient thermal behavior. The study explores the trade-offs between model fidelity and utility in BTMS control co-design (CCD) applications. BTMSs manage the temperature to ensure battery performance, safety, and longevity. Although computational fluid dynamics (CFD) is useful in steady and transient battery thermal analysis, full-fidelity CFD simulations are computationally expensive, particularly within CCD optimization loops. RC-based ROMs commonly used in early-stage design can mitigate the computational effort. These models can be formulated at different fidelity levels by representing various battery components as single or multiple LC bodies connected by resistance elements. The proposed augmented RC-based ROM enhances transient simulation accuracy while maintaining low computational cost, thereby, facilitating thorough design exploration using the CCD approach. This study focuses on comparing model fidelity levels, and their quantifiable utility measures, such as design accuracy and computational cost.
UR - http://www.scopus.com/inward/record.url?scp=85196153739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196153739&partnerID=8YFLogxK
U2 - 10.2514/6.2024-2363
DO - 10.2514/6.2024-2363
M3 - Conference contribution
AN - SCOPUS:85196153739
SN - 9781624107115
T3 - AIAA SciTech Forum and Exposition, 2024
BT - AIAA SciTech Forum and Exposition, 2024
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA SciTech Forum and Exposition, 2024
Y2 - 8 January 2024 through 12 January 2024
ER -